

Economics of Al

REACH Action Learning Project – Team 1

REACH Action Learning Project Team

Max Tosti Director Aviation Reyes Holdings

Frank Castaneda RGM - Director Space Strategy Reyes Coca-Cola Bottling

Scott Gilbertson General Manager, Fresno Reyes Coca-Cola Bottling

Patricia Crane Senior Director, Human Resources Reyes Beverage Group

Dennis Kipnis Director Financial Systems Martin Brower

Jim Alcock Senior Director, Operations Reyes Beverage Group

Advisors

Amar Abdelhak Vice President, IT Global Infrastructure Reyes Holdings

Ryan Murphy Director Finance and Capital Reyes Holdings

Additional Contributors & Stakeholders

Keith Brandstetter IT VP Planning, Architecture & Engineering

MB-RH Information Technology

Carl McDonald Chief Information Security Officer

MB-RH – Information Technology

Tom Clewett SVP & Chief Technology Officer

MB-RH Information Technology

Zarina Atambaeva Associate Linux Engineer

MB-RH – Information Technology

David Ibarra Sr. Unified Communications Engineer

MB-RH – Information Technology

Coby Friedman Data Science

RCCB-Information Technology

Project Guidance: Focus on the big rocks that will move the needle

Project Goal: Create a framework that can be used to measure the viability of any Al Solution that is brought to RFB and is used consistently across all BU's to produce ROI over 5-year period.

AI Implementation Challenges

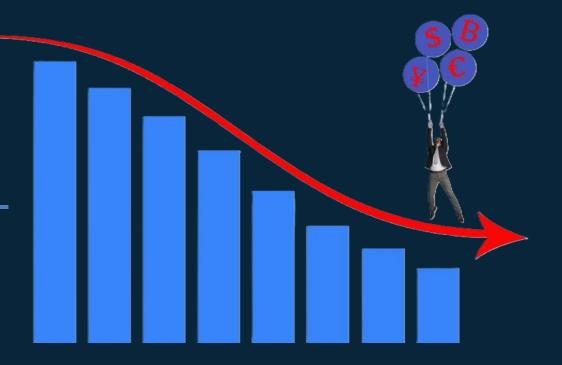
Growing costs with unclear ROI In 2024, businesses are expected to spend \$175 billion on AI solutions, with costs climbing by 4-5% annually in the next 4-5 years (Gartner).

The Costs Associated with Implementing These Technologies

Initial Implementation Cost

The initial implementation cost of AI and Generative AI can be high, requiring significant investment in hardware, software, and skilled personnel.

Ongoing Maintenance Cost


The ongoing maintenance cost of AI and Generative AI requires continuous investment in software upgrades and maintenance to ensure optimal performance.

Energy Costs

Data centers use of energy grow exponentially as BOTs run continuously to check data

Personnel

Upscaling employees to fully understand and leverage new solutions. **DEVEQ EAMILY OF D**

REYES FAMILY OF BUSINESSES

Cost

Hidden

Current State of Al in the Organization

Inconsistent ROI Calculations

Different business units use varying methods for calculating AI ROI, leading to conflicting outputs

Siloed Project Management

AI projects are managed in isolation by different business units (BUs), with little alignment or standardization across teams.

Example from Ongoing Project

Stakeholder interviews reveal that one project has several conflicting ROI calculation methods across involved parties.

Al Project Stakeholders

Al Developers

Design and build AI algorithms and models.

Executive Leaders

Define strategic vision and allocate resources.

{

Finance Team

Evaluate financial viability and manage budgets.

0

Governance Board

Establish ethical guidelines and ensure compliance.

Big Idea: Use Generative AI to calculate the ROI of AI

Al ROI Calculator: A tool to standardize the calculation of Al costs and returns, including both qualitative and quantitative aspects.

AI Cost Calculator Features

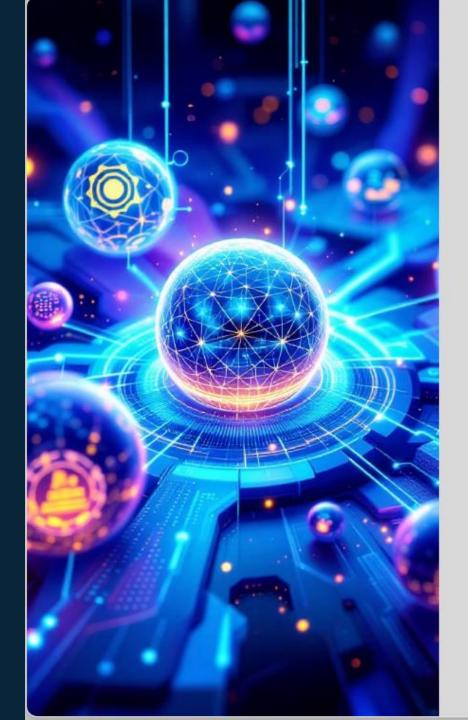
2

1 Scenario-based Estimation

Cost estimation based on specific use cases and scenarios.

Solution Comparison

Compare costs between different AI and Generative AI solutions.


3 Cost-saving Identification

Highlights potential areas for cost reduction in AI implementation.

The MATH

How the solution calculates ROI, Break-even and Net Present Value

				Ongoing				Time to	Discount	Time Horizon
		Upfront Cost		Costs	Revenue		Cost Savings	Implement	Rate	for ROI
			UC	00		RS	CS	TI	r	n
		\$	240,000	\$85,000	\$	200,000	???	0.75	8%	5 yrs
Net Benefit	NB=RS-OC	\$	115,000				-			
ROI	ROI=NB/(UC+OC)		35.38%							
Break-even Point	(UC + OC)/(RS/TI)		1.22							
							// n.	ວ ເ 🌃	ba	
Net Present Value	Year 1		\$106,481				r R			
Net Present Value	Year 2		\$98,594						9	
Net Present Value	Year 3		\$91,291							
Net Present Value	Year 4		\$84,528				1			
Net Present Value	Year 5		\$78,267							
	Total		\$219,162							

Multi-Agent Methodology

Data Collection

Agents gather relevant project information from various sources.

Analysis

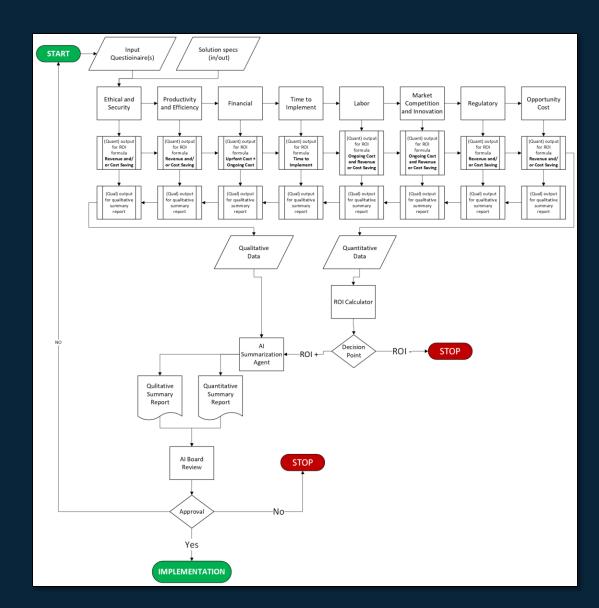
1

2

3

4

Specialized bots process data in their respective domains.

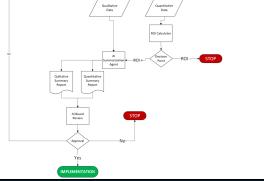

Integration

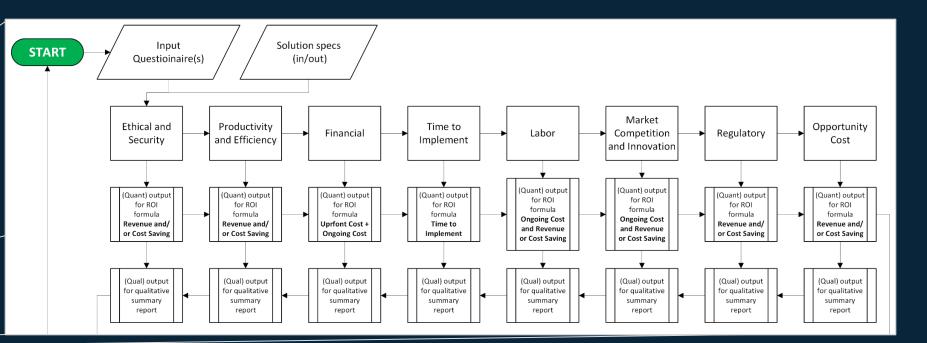
Results are combined for a comprehensive project evaluation.

Reporting

Final insights are presented in an easy-to-understand format.

REYES FAMILY OF BUSINESSES


The Framework


Overview

The Framework

Overview Intake and Supporting Agents

Intake Model

General Questions

Gathers basic project information to set up specialized bots.

2 Scope Definition

Clarifies what's included and excluded from the AI project.

Initial Estimates

Collects preliminary data on costs, time savings, and expected returns.

Data Collection Agents

Continuous Monitoring

Agents collect real-time data on AI project performance.

2 ^A

Automated Analysis

AI-powered analysis of collected data for insights.

3

Feedback Loop

Continuous improvement of AI cost and ROI models.

Expert Bots in Categories

Productivity Bot

Analyzes efficiency gains and time savings from AI implementation.

Security Bot

Evaluates ethical considerations and security implications of AI projects.

Financial Bot

Calculates ROI, NPV, and other financial metrics for AI initiatives.

Human

Productivity and Efficiency Model

Time Savings	Cost Avoidance
Calculates potential time saved through AI implementation.	Identifies areas where A prevent unnecessary exp

Efficiency Gains

Quantifies improvements in operational efficiency.

Regulatory Compliance Model

Legal Framework 1 Ensures AI projects comply

regulations.

3

2 Industry Standards

with relevant laws and with established industry best practices.

Aligns AI implementations

Compliance Monitoring

Continuously tracks adherence to regulatory requirements.

Labor Market Model

l can

penses.

Skill Gap Analysis Identifies necessary skills for AI implementation and current workforce capabilities.

Market Rate Assessment Evaluates competitive compensation for AI professionals.

Talent Availability Assesses the local and global pool of AI talent.

Ethical and Security Model

RH Ethics Doctrine 1

implementation

Ensures AI projects align with Reves Holding's ethical standards.

2 IT Risk Evaluation Assesses potential technological risks associated with AI

Data Security 3

Evaluates measures to protect sensitive information in AI systems.

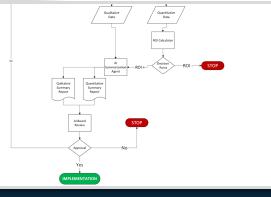
Financial Model

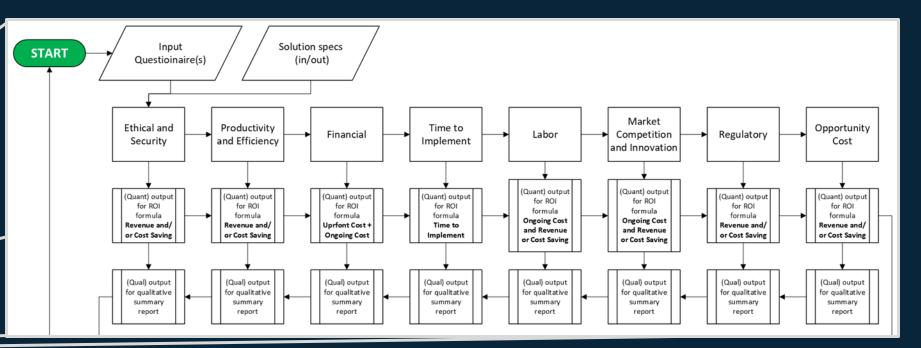
Net Present Value

Calculates the NPV of AI projects over a 5-year period.

Break-Even Analysis

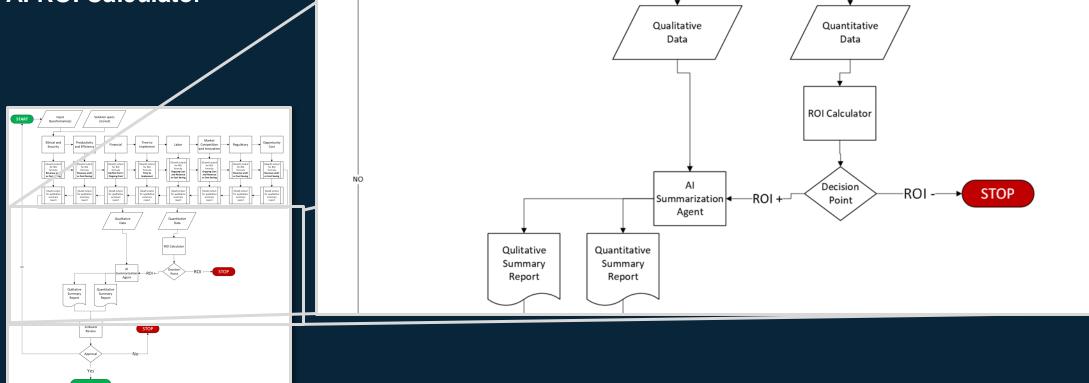
Determines the point at which Al investments become profitable.

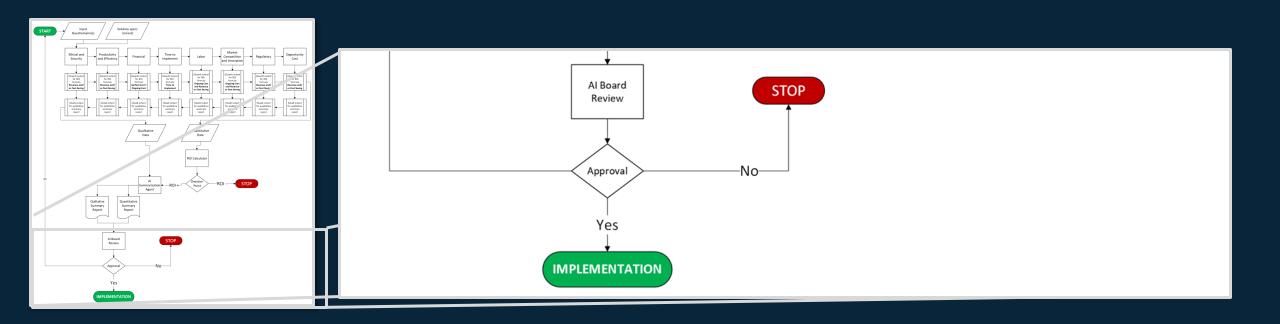

ROI Percentage


Computes the return on investment for AI initiatives.

The Framework

Overview Intake and Supporting Agents




The Framework

AI ROI Calculator

The Framework Human Interaction

& Final Approval

Solution(s)

Solution

Conclusion

Standardized Approach

AI ROI Calculator provides a consistent method for evaluating AI projects.

Informed Decision-Making

Enables leadership to make data-driven decisions on AI investments.

Continuous Improvement

Framework for ongoing refinement of AI cost management processes.

Next Steps

1

2

3

4

Pilot Implementation

Test AI ROICalculator on select projects across different business units.

Feedback Gathering

Collect user feedback and refine the tool based on realworld usage.

Full Rollout

Implement the AI ROI Calculator company-wide after successful pilot.

Ongoing Optimization

Continuously update and improve the tool based on emerging AI trends.

THIS IS THE START OF SOMETHING 0 BIG,

ENGLISH

